Restricted 132-Dumont permutations

نویسنده

  • Toufik Mansour
چکیده

A permutation π is said to be a Dumont permutation of the first kind if each even integer in π must be followed by a smaller integer, and each odd integer is either followed by a larger integer or is the last element of π (see, for example, www.theory.csc.uvic.ca/∼cos/inf/perm/Genocchi Info.html). In Duke Math. J. 41 (1974), 305–318, Dumont showed that certain classes of permutations on n letters are counted by the Genocchi numbers. In particular, Dumont showed that the (n+ 1)st Genocchi number is the number of Dummont permutations of the first kind on 2n letters. In this paper we study the number of Dumont permutations of the first kind on n letters avoiding the pattern 132 and avoiding (or containing exac tly once) an arbitrary pattern on k letters. In several interesting cases the generating function depends only on k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Dumont permutations, Dyck paths, and noncrossing partitions

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that use...

متن کامل

Dumont permutations of the third kind

We consider the set of permutations all of whose descents are from an even value to an even value. Proving a conjecture of Kitaev and Remmel, we show that these permutations are enumerated by Genocchi numbers, hence equinumerous to Dumont permutations of the first (and second) kind, and thus may be called Dumont permutations of the third kind. We also define the related Dumont permutations of t...

متن کامل

Restricted Dumont permutations

We analyze the structure and enumerate Dumont permutations of the first and second kinds avoiding certain patterns or sets of patterns of length 3 and 4. Some cardinalities are given by Catalan numbers, powers of 2, little Schröder numbers, and other known or related sequences.

متن کامل

Horse paths, restricted 132-avoiding permutations, continued fractions, and Chebyshev polynomials

Several authors have examined connections among 132-avoiding permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of lattice paths. ...

متن کامل

Restricted Permutations Related to Fibonacci Numbers and k-Generalized Fibonacci Numbers

A permutation π ∈ Sn is said to avoid a permutation σ ∈ Sk whenever π contains no subsequence with all of the same pairwise comparisons as σ. In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 123, 132, and 213 is the Fibonacci number Fn+1. In this paper we generalize this result in two ways. We first show that the number of permutations which avoid 132, 213, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2004